Performance analysis of seven Convolutional Neural Networks (CNNs) with transfer learning for Invasive Ductal Carcinoma (IDC) grading in breast histopathological images

Autor: Wingates Voon, Yan Chai Hum, Yee Kai Tee, Wun-She Yap, Maheza Irna Mohamad Salim, Tian Swee Tan, Hamam Mokayed, Khin Wee Lai
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Scientific Reports, Vol 12, Iss 1, Pp 1-19 (2022)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-022-21848-3
Popis: Abstract Computer-aided Invasive Ductal Carcinoma (IDC) grading classification systems based on deep learning have shown that deep learning may achieve reliable accuracy in IDC grade classification using histopathology images. However, there is a dearth of comprehensive performance comparisons of Convolutional Neural Network (CNN) designs on IDC in the literature. As such, we would like to conduct a comparison analysis of the performance of seven selected CNN models: EfficientNetB0, EfficientNetV2B0, EfficientNetV2B0-21k, ResNetV1-50, ResNetV2-50, MobileNetV1, and MobileNetV2 with transfer learning. To implement each pre-trained CNN architecture, we deployed the corresponded feature vector available from the TensorFlowHub, integrating it with dropout and dense layers to form a complete CNN model. Our findings indicated that the EfficientNetV2B0-21k (0.72B Floating-Point Operations and 7.1 M parameters) outperformed other CNN models in the IDC grading task. Nevertheless, we discovered that practically all selected CNN models perform well in the IDC grading task, with an average balanced accuracy of 0.936 ± 0.0189 on the cross-validation set and 0.9308 ± 0.0211on the test set.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje