Autor: |
Daniele Castorina, Giovanni Catino, Carlo Mantegazza |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Mathematics in Engineering, Vol 4, Iss 1, Pp 1-15 (2022) |
Druh dokumentu: |
article |
ISSN: |
2640-3501 |
DOI: |
10.3934/mine.2022002?viewType=HTML |
Popis: |
We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, when $ p $ is smaller than the critical Sobolev exponent $ \frac{n+2}{n-2} $. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|