APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System

Autor: Safdar Hussain Javed, Maaz Bin Ahmad, Muhammad Asif, Waseem Akram, Khalid Mahmood, Ashok Kumar Das, Sachin Shetty
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: IEEE Access, Vol 11, Pp 74000-74020 (2023)
Druh dokumentu: article
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2023.3291599
Popis: The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge I-IoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm.
Databáze: Directory of Open Access Journals