Liouville type theorems and regularity of solutions to degenerate or singular problems part II: odd solutions

Autor: Yannick Sire, Susanna Terracini, Stefano Vita
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mathematics in Engineering, Vol 3, Iss 1, Pp 1-50 (2021)
Druh dokumentu: article
ISSN: 2640-3501
DOI: 10.3934/mine.2021005/fulltext.html
Popis: We consider a class of equations in divergence form with a singular/degenerate weight \[ -\mathrm{div}(|y|^a A(x,y)\nabla u)=|y|^a f(x,y)+\textrm{div}(|y|^aF(x,y))\;. \] Under suitable regularity assumptions for the matrix $A$, the forcing term $f$ and the field $F$, we prove Hölder continuity of solutions which are odd in $y\in\mathbb{R}$, and possibly of their derivatives. In addition, we show stability of the $C^{0,\alpha}$ and $C^{1,\alpha}$ a priori bounds for approximating problems in the form \[ -\mathrm{div}((\varepsilon^2+y^2)^{a/2} A(x,y)\nabla u)=(\varepsilon^2+y^2)^{a/2} f(x,y)+\textrm{div}((\varepsilon^2+y^2)^{a/2}F(x,y)) \] as $\varepsilon\to 0$. Our method is based upon blow-up and appropriate Liouville type theorems.
Databáze: Directory of Open Access Journals