Latin Matchings and Ordered Designs OD(n−1, n, 2n−1)

Autor: Kai Jin, Taikun Zhu, Zhaoquan Gu, Xiaoming Sun
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics, Vol 10, Iss 24, p 4703 (2022)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math10244703
Popis: This paper revisits a combinatorial structure called the large set of ordered design (LOD). Among others, we introduce a novel structure called Latin matching and prove that a Latin matching of order n leads to an LOD(n−1, n, 2n−1); thus, we obtain constructions for LOD(1, 2, 3), LOD(2, 3, 5), and LOD(4, 5, 9). Moreover, we show that constructing a Latin matching of order n is at least as hard as constructing a Steiner system S(n−2, n−1, 2n−2); therefore, the order of a Latin matching must be prime. We also show some applications in multiagent systems.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje