Autor: |
Kao Chia-Hung, Hsieh Te-Chun, Yu Chun-Yen, Yen Kuo-Yang, Yang Shih-Neng, Wang Yao-Ching, Liang Ji-An, Chien Chun-Ru, Chen Shang-Wen |
Jazyk: |
angličtina |
Rok vydání: |
2010 |
Předmět: |
|
Zdroj: |
Radiation Oncology, Vol 5, Iss 1, p 76 (2010) |
Druh dokumentu: |
article |
ISSN: |
1748-717X |
DOI: |
10.1186/1748-717X-5-76 |
Popis: |
Abstract Background To define a suitable threshold setting for gross tumor volume (GTV) when using 18Fluoro-deoxyglucose positron emission tomography and computed tomogram (PET/CT) for radiotherapy planning in head and neck cancer (HNC). Methods Fifteen HNC patients prospectively received PET/CT simulation for their radiation treatment planning. Biological target volume (BTV) was derived from PET/CT-based GTV of the primary tumor. The BTVs were defined as the isodensity volumes when adjusting different percentage of the maximal standardized uptake value (SUVmax), excluding any artifact from surrounding normal tissues. CT-based primary GTV (C-pGTV) that had been previously defined by radiation oncologists was compared with the BTV. Suitable threshold level (sTL) could be determined when BTV value and its morphology using a certain threshold level was observed to be the best fitness of the C-pGTV. Suitable standardized uptake value (sSUV) was calculated as the sTL multiplied by the SUVmax. Results Our result demonstrated no single sTL or sSUV method could achieve an optimized volumetric match with the C-pGTV. The sTL was 13% to 27% (mean, 19%), whereas the sSUV was 1.64 to 3.98 (mean, 2.46). The sTL was inversely correlated with the SUVmax [sTL = -0.1004 Ln (SUVmax) + 0.4464; R2 = 0.81]. The sSUV showed a linear correlation with the SUVmax (sSUV = 0.0842 SUVmax + 1.248; R2 = 0.89). The sTL was not associated with the value of C-pGTVs. Conclusion In PET/CT-based BTV for HNC, a suitable threshold or SUV level can be established by correlating with SUVmax rather than using a fixed threshold. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|