Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p

Autor: Feng Wei, Chengyuan Ma, Tong Zhou, Xuechao Dong, Qinghua Luo, Li Geng, Lijuan Ding, Yandong Zhang, Li Zhang, Nan Li, Yang Li, Yan Liu
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Molecular Cancer, Vol 16, Iss 1, Pp 1-14 (2017)
Druh dokumentu: article
ISSN: 1476-4598
DOI: 10.1186/s12943-017-0694-8
Popis: Abstract Background Although gemcitabine-based chemotherapy has been established as a core multimodal therapy for non-small cell lung cancer (NSCLC) treatment, its clinical efficacy remains limited by the development of acquired resistance following tumor metastasis and relapse. In this study, we investigated how gemcitabine-resistant (GR) cells contribute to the development of NSCLC tumor malignancy via exosome-mediated transfer of microRNAs. Methods We first studied the mechanism of exosome internalization via PKH-67 staining and an immunofluorescence assay, then confirmed our finding by transmission electron microscopy and western blot analysis. Candidate miRNAs were identified through microarray analysis. Thereafter, RT-PCR, MTS, Transwell and soft agar assays were performed to assess the role of exosomic miR-222-3p in vitro. A 3’ untranslated region reporter assay was applied to identify the target of miR-222-3p. A lung metastasis mouse model was constructed to evaluate tumor growth and metastasis in vivo. Finally, clinical samples were used for correlation analysis between exosomic miR-222-3p levels and patients’ response to gemcitabine. Results A549-GR–derived exosomes were internalized by receipt cells via caveolin- and lipid raft-dependent endocytosis, which allowed the transfer of miR-222-3p. Exosomic miR-222-3p enhanced the proliferation, gemcitabine resistance, migration, invasion, and anti-anoikis of parental sensitive cells by directly targeting the promoter of SOCS3. In addition, a higher level of exosomic miR-222-3p in sera usually predicted worse prognosis in NSCLC patients. Conclusion Our data demonstrate that exosomic-miR-222-3p functions as a principal regulator of gemcitabine resistance and malignant characteristics by targeting SOCS3. The exosomic miR-222-3p level in sera may be a potential prognostic biomarker for predicting gemcitabine sensitivity in NSCLC patients.
Databáze: Directory of Open Access Journals