Autor: |
Victor Alekseev, Guido Festuccia, Victor Mishnyakov, Nicolai Terziev, Maxim Zabzine |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
European Physical Journal C: Particles and Fields, Vol 82, Iss 8, Pp 1-25 (2022) |
Druh dokumentu: |
article |
ISSN: |
1434-6052 |
DOI: |
10.1140/epjc/s10052-022-10610-8 |
Popis: |
Abstract We present a systematic study of $${{\mathcal {N}}}=(2,2)$$ N = ( 2 , 2 ) supersymmetric non-linear sigma models on $$S^2$$ S 2 with the target being a Kähler manifold. We discuss their reformulation in terms of cohomological field theory. In the cohomological formulation we use a novel version of 2D self-duality which involves a U(1) action on $$S^2$$ S 2 . In addition to the generic model we discuss the theory with target space equivariance corresponding to a supersymmetric sigma model coupled to a non-dynamical supersymmetric background gauge multiplet. We discuss the localization locus and perform a one-loop calculation around the constant maps. We argue that the theory can be reduced to some exotic model over the moduli space of holomorphic disks. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|