Agent-based modeling in cancer biomedicine: applications and tools for calibration and validation

Autor: Nicolò Cogno, Cristian Axenie, Roman Bauer, Vasileios Vavourakis
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Cancer Biology & Therapy, Vol 25, Iss 1 (2024)
Druh dokumentu: article
ISSN: 15384047
1555-8576
1538-4047
DOI: 10.1080/15384047.2024.2344600
Popis: Computational models are not just appealing because they can simulate and predict the development of biological phenomena across multiple spatial and temporal scales, but also because they can integrate information from well-established in vitro and in vivo models and test new hypotheses in cancer biomedicine. Agent-based models and simulations are especially interesting candidates among computational modeling procedures in cancer research due to the capability to, for instance, recapitulate the dynamics of neoplasia and tumor – host interactions. Yet, the absence of methods to validate the consistency of the results across scales can hinder adoption by turning fine-tuned models into black boxes. This review compiles relevant literature that explores strategies to leverage high-fidelity simulations of multi-scale, or multi-level, cancer models with a focus on verification approached as simulation calibration. We consolidate our review with an outline of modern approaches for agent-based models’ validation and provide an ambitious outlook toward rigorous and reliable calibration.
Databáze: Directory of Open Access Journals