Autor: |
Ushangi Goginava, Károly Nagy |
Jazyk: |
angličtina |
Rok vydání: |
2010 |
Předmět: |
|
Zdroj: |
Journal of Function Spaces and Applications, Vol 8, Iss 2, Pp 181-200 (2010) |
Druh dokumentu: |
article |
ISSN: |
0972-6802 |
DOI: |
10.1155/2010/638327 |
Popis: |
The main aim of this paper is to prove that there exists a martingale f∈ H1/2 such that the maximal Fejér operator with respect to Walsh-Kaczmarz system does not belong to the space L1/2. For the two-dimensional case, we prove that there exists a martingale f∈H1/2□(f∈H1/2) such that the restricted (unrestricted) maximal operator of Fejér means of two-dimensional Walsh-Kaczmarz-Fourier series does not belong to the space weak-L1/2. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|