Adsorption Kinetic Model Predicts and Improves Reliability of Electrochemical Serotonin Detection

Autor: Ashley Augustiny Chapin, Jinjing Han, Reza Ghodssi
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Methods and Protocols, Vol 6, Iss 1, p 6 (2023)
Druh dokumentu: article
ISSN: 2409-9279
DOI: 10.3390/mps6010006
Popis: Serotonin (5-HT) is a neurotransmitter involved in many biophysiological processes in the brain and in the gastrointestinal tract. Electrochemical methods are commonly used to quantify 5-HT, but their reliability may suffer due to the time-dependent nature of adsorption-limited 5-HT detection, as well as electrode fouling over repeated measurements. Mathematical characterization and modeling of adsorption-based electrochemical signal generation would improve reliability of 5-HT measurement. Here, a model was developed to track 5-HT electrode adsorption and resulting current output by combining Langmuir adsorption kinetic equations and adsorption-limited electrochemical equations. 5-HT adsorption binding parameters were experimentally determined at a carbon-nanotube coated Au electrode: KD = 7 × 10−7 M, kon = 130 M−1 s−1, koff = 9.1 × 10−5 s−1. A computational model of 5-HT adsorption was then constructed, which could effectively predict 5-HT fouling over 50 measurements (R2 = 0.9947), as well as predict electrode responses over varying concentrations and measurement times. The model aided in optimizing the measurement of 5-HT secreted from a model enterochromaffin cell line—RIN14B—minimizing measurement time. The presented model simplified and improved the characterization of 5-HT detection at the selected electrode. This could be applied to many other adsorption-limited electrochemical analytes and electrode types, contributing to the improvement of application-specific modeling and optimization processes.
Databáze: Directory of Open Access Journals