Popis: |
BackgroundThe optimization of endometrial receptivity (ER) through individualized therapies has been shown to enhance the likelihood of successful gestation. However, current practice lacks comprehensive methods for evaluating the ER of patients with recurrent pregnancy loss (RPL). Radiomics, an emerging AI-based technique that enables the extraction of mineable information from medical images, holds potential to offer a more objective and quantitative approach to ER assessment. This innovative tool may facilitate a deeper understanding of the endometrial environment and enable clinicians to optimize ER evaluation in RPL patients.ObjectiveThis study aimed to identify ultrasound radiomics features associated with ER, with the purpose of predicting successful ongoing pregnancies in RPL patients, and to assess the predictive accuracy of these features against regular ER parameters.MethodsThis retrospective, controlled study involved 262 patients with unexplained RPL and 273 controls with a history of uncomplicated full-term pregnancies. Radiomics features were extracted from ultrasound endometrial segmentation images to derive a radiomics score (rad-score) for each participant. Associations between rad-scores, baseline clinical variables, and sonographic data were evaluated using univariate and multivariate logistic regression analyses to identify potential indicators of RPL. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive accuracy of the rad-score and other identified indicators in discriminating RPL cases. Furthermore, the relationships between age and these identified indicators were assessed via Pearson correlation analysis.ResultsFrom the 1312 extracted radiomics features, five non-zero coefficient radiomics signatures were identified as significantly associated with RPL, forming the basis of the rad-score. Following multivariate logistic regression analysis, age, spiral artery pulsatility index (SA-PI), vascularisation index (VI), and rad-score emerged as independent correlates of RPL (all P |