Popis: |
This work aimed to characterize the impact of copper (Cu), at environmentally relevant concentrations, using the freshwater microalga Raphidocelis subcapitata. Algae were incubated with 33 or 53 µg/L Cu, in OECD medium, and toxic impacts were evaluated over 72 h, using different cellular and biochemical biomarkers. The exposure to 33 µg/L Cu had an algistatic effect: slowing growth and reducing algal population (53%, at 72 h) without compromising the cell membrane. This Cu concentration promoted a transient reduction in chlorophyll a (chla) content and typical markers of oxidative stress: increased levels of reactive oxygen species (ROS), augmented catalase (CAT) activity, and lipid peroxidation (malondialdehyde, MDA). Algae exposed to 53 µg/L Cu, suffered a severe effect with a 93% reduction in the number of cells, 50% decrease in chla content, and diminished (17%) maximum photochemical quantum yield of PSII (Fv/Fm). This population also presented increased levels of ROS and MDA, 33 and 20 times higher than the control, respectively, at 72 h, augmented CAT activity, and permeabilized cell membrane (5%, at 72 h). These findings provide valuable insights into Cu toxicity in aquatic ecosystems, highlighting the biochemical and physiological impacts at environmentally relevant concentrations. |