On H-Supermagic Labelings of m-Shadow of Paths and Cycles
Autor: | Ika Hesti Agustin, F. Susanto, Dafik, R. M. Prihandini, R. Alfarisi, I. W. Sudarsana |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 2019 (2019) |
Druh dokumentu: | article |
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2019/8780329 |
Popis: | A simple graph G=(V,E) is said to be an H-covering if every edge of G belongs to at least one subgraph isomorphic to H. A bijection f:V∪E→{1,2,3,…,V+E} is an (a,d)-H-antimagic total labeling of G if, for all subgraphs H′ isomorphic to H, the sum of labels of all vertices and edges in H′ form an arithmetic sequence {a,a+d,…,(k-1)d} where a>0, d≥0 are two fixed integers and k is the number of all subgraphs of G isomorphic to H. The labeling f is called super if the smallest possible labels appear on the vertices. A graph that admits (super) (a,d)-H-antimagic total labeling is called (super) (a,d)-H-antimagic. For a special d=0, the (super) (a,0)-H-antimagic total labeling is called H-(super)magic labeling. A graph that admits such a labeling is called H-(super)magic. The m-shadow of graph G, Dm(G), is a graph obtained by taking m copies of G, namely, G1,G2,…,Gm, and then joining every vertex u in Gi, i∈{1,2,…,m-1}, to the neighbors of the corresponding vertex v in Gi+1. In this paper we studied the H-supermagic labelings of Dm(G) where G are paths and cycles. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |