A survey on cognitive radio network attack mitigation using machine learning and blockchain

Autor: I. Evelyn Ezhilarasi, J. Christopher Clement, Joseph M. Arul
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: EURASIP Journal on Wireless Communications and Networking, Vol 2023, Iss 1, Pp 1-20 (2023)
Druh dokumentu: article
ISSN: 1687-1499
DOI: 10.1186/s13638-023-02290-z
Popis: Abstract Cognitive radio network is a promising technology to enhance the spectrum utilization and to resolve the spectrum scarcity issues. But the malicious users play havoc with the network during spectrum sensing and demean the network performance. It is mandatory to identify such malicious attacks and address it. There have been many traditional methods to mitigate the cognitive radio network attacks. In this paper, we have surveyed advanced attack mitigation techniques like machine learning, deep learning and blockchain. Thus, by detecting and addressing the malicious activities, the throughput and overall network performance can be improved.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje