Yüz Tanıma Sistemleri İçin Geliştirilmiş Veri Artırma Temelli Adaptif Yüz Tanıma Modeli

Autor: Cem Emeksiz, Mustafa Tan
Jazyk: English<br />Turkish
Rok vydání: 2023
Předmět:
Zdroj: Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Vol 11, Iss 2, Pp 588-606 (2023)
Druh dokumentu: article
ISSN: 2148-2446
DOI: 10.29130/dubited.1024670
Popis: Hızla gelişen bilgisayar ve grafik ara yüzüne sahip cihaz teknolojileri, yüz tanıma çalışmalarında yeni ufuklar açmışlardır. Özellikle derin öğrenme ağ mimari yapılarından biri olan evrişimsel sinir ağları (Convolutional Neural Network-CNN), yüz tanıma çalışmalarında büyük başarılar sağlamaktadır. Bu başarılar da veri setlerinin büyüklüğü önemli rol oynamaktadır. Özellikle kullanılan veri setlerindeki yetersizlik başarı oranlarını etkileyebilmektedir. Bunun önüne geçmek için ise veri tipine göre değişik veri artırma teknikleri uygulanmaktadır. Yapılan bu çalışmada yüz tanımlama problemi için derin öğrenmeye dayalı adaptif bir yüz tanıma modeli (AYTM) geliştirildi. Geliştirilen bu model kontrast sınırlı uyarlanabilir histogram eşitleme (Contrast Limited Adaptive Histogram Equalization-CLAHE), CNN ve çok katmanlı algılayıcı (Multi Layer Perceptron-MLP)’ndan oluşmaktadır. İki farklı veri seti grubu kullanılarak geliştirilen modelin performans değerlendirilmesi yapılmıştır. Özellikle veri artırma işleminin model başarısını ciddi oranda artırdığı gözlendi ve veri artırma işleminin derin öğrenme uygulamalarında gerekliliği vurgulanmıştır.
Databáze: Directory of Open Access Journals