Popis: |
Abstract Background Chronic spinal cord injury (SCI) increases morbidity and mortality associated with cardiometabolic diseases, secondary to increases in central adiposity, hyperlipidaemia and impaired glucose tolerance. While upper-body Moderate Intensity Continuous Training (MICT) improves cardiorespiratory fitness, its effects on cardiometabolic component risks in adults with SCI appear relatively modest. The aim of this study is to assess the acute effects of Continuous Resistance Training (CRT), High Intensity Interval Training (HIIT), MICT and rest (CON) on fasting and postprandial systemic biomarkers and substrate utilisation. Methods Eleven healthy, chronic SCI (> 1 year, ASIA A-C) men will be recruited. Following preliminary testing, each will complete four experimental conditions, where they will report to the laboratory following an ~ 10-h overnight fast. A venous blood sample will be drawn and expired gases collected to estimate resting metabolic rate (RMR). In order to ensure an isocaloric exercise challenge, each will complete CRT first, with the remaining three conditions presented in randomised order: (1) CRT, ~ 45 min of resistance manoeuvres (weight lifting) interspersed with low-resistance, high-speed arm-crank exercise; (2) CON, seated rest; (3) MICT, ~ 45 min constant arm-crank exercise at a resistance equivalent to 30–40% peak power output (PPO) and; (4) HIIT, ~ 35 min arm-crank exercise with the resistance alternating every 2 min between 10% PPO and 70% PPO. After each ~ 45-min condition, participants will ingest a 2510-kJ liquid test meal (35% fat, 50% carbohydrate, 15% protein). Venous blood and expired gas samples will be collected at the end of exercise and at regular intervals for 120 min post meal. Discussion This study should establish the acute effects of different forms of exercise on fasting and postprandial responses in chronic SCI male patients. Measures of glucose clearance, insulin sensitivity, lipid and inflammatory biomarker concentrations will be assessed and changes in whole-body substrate oxidation estimated from expired gases. Trial registration ClinicalTrials.gov, ID: NCT03545867. Retrospectively registered on 1 June 2018. |