On the solutions to p-Poisson equation with Robin boundary conditions when p goes to +∞

Autor: Amato Vincenzo, Masiello Alba Lia, Nitsch Carlo, Trombetti Cristina
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 11, Iss 1, Pp 1631-1649 (2022)
Druh dokumentu: article
ISSN: 2191-950X
DOI: 10.1515/anona-2022-0258
Popis: We study the behaviour, when p→+∞p\to +\infty , of the first p-Laplacian eigenvalues with Robin boundary conditions and the limit of the associated eigenfunctions. We prove that the limit of the eigenfunctions is a viscosity solution to an eigenvalue problem for the so-called ∞\infty -Laplacian. Moreover, in the second part of the article, we focus our attention on the p-Poisson equation when the datum ff belongs to L∞(Ω){L}^{\infty }\left(\Omega ) and we study the behaviour of solutions when p→∞p\to \infty .
Databáze: Directory of Open Access Journals