Autor: |
Amato Vincenzo, Masiello Alba Lia, Nitsch Carlo, Trombetti Cristina |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Advances in Nonlinear Analysis, Vol 11, Iss 1, Pp 1631-1649 (2022) |
Druh dokumentu: |
article |
ISSN: |
2191-950X |
DOI: |
10.1515/anona-2022-0258 |
Popis: |
We study the behaviour, when p→+∞p\to +\infty , of the first p-Laplacian eigenvalues with Robin boundary conditions and the limit of the associated eigenfunctions. We prove that the limit of the eigenfunctions is a viscosity solution to an eigenvalue problem for the so-called ∞\infty -Laplacian. Moreover, in the second part of the article, we focus our attention on the p-Poisson equation when the datum ff belongs to L∞(Ω){L}^{\infty }\left(\Omega ) and we study the behaviour of solutions when p→∞p\to \infty . |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|