Autor: |
Synh Viet-Uyen Ha, Nhat Minh Chung, Hung Ngoc Phan, Cuong Tien Nguyen |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Sensors, Vol 20, Iss 23, p 6973 (2020) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s20236973 |
Popis: |
Decades of ongoing research have shown that background modelling is a very powerful technique, which is used in intelligent surveillance systems, in order to extract features of interest, known as foregrounds. In order to work with the dynamic nature of different scenes, many techniques of background modelling adopted the unsupervised approach of Gaussian Mixture Model with an iterative paradigm. Although the technique has had much success, a problem occurs in cases of sudden scene changes with high variation (e.g., illumination changes, camera jittering) that the model unknowingly and unnecessarily takes into account those effects and distorts the results. Therefore, this paper proposes an unsupervised, parallelized, and tensor-based approach that algorithmically works with entropy estimations. These entropy estimations are used in order to assess the uncertainty level of a constructed background, which predicts both the present and future variations from the inputs, thereby opting to use either the incoming frames to update the background or simply discard them. Our experiments suggest that this method is highly integrable into a surveillance system that consists of other functions and can be competitive with state-of-the-art methods in terms of processing speed. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|