Bootstrap-based model selection in subset polynomial regression

Autor: Suparman Suparman, Mohd Saifullah Rusiman
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: IJAIN (International Journal of Advances in Intelligent Informatics), Vol 4, Iss 2, Pp 87-94 (2018)
Druh dokumentu: article
ISSN: 2442-6571
2548-3161
DOI: 10.26555/ijain.v4i2.173
Popis: The subset polynomial regression model is wider than the polynomial regression model. This study proposes an estimate of the parameters of the subset polynomial regression model with unknown error and distribution. The Bootstrap method is used to estimate the parameters of the subset polynomial regression model. Simulated data is used to test the performance of the Bootstrap method. The test results show that the bootstrap method can estimate well the parameters of the subset polynomial regression model.
Databáze: Directory of Open Access Journals