Autor: |
Shuling Xu, Zhijun Zhu, Daniel G. Delafield, Michael J. Rigby, Gaoyuan Lu, Megan Braun, Luigi Puglielli, Lingjun Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 15, Iss 1, Pp 1-18 (2024) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-024-50299-9 |
Popis: |
Abstract Dysregulated glycerophospholipid (GP) metabolism in the brain is associated with the progression of neurodegenerative diseases including Alzheimer’s disease (AD). Routine liquid chromatography-mass spectrometry (LC-MS)-based large-scale lipidomic methods often fail to elucidate subtle yet important structural features such as sn-position, hindering the precise interrogation of GP molecules. Leveraging high-resolution demultiplexing (HRdm) ion mobility spectrometry (IMS), we develop a four-dimensional (4D) lipidomic strategy to resolve GP sn-position isomers. We further construct a comprehensive experimental 4D GP database of 498 GPs identified from the mouse brain and an in-depth extended 4D library of 2500 GPs predicted by machine learning, enabling automated profiling of GPs with detailed acyl chain sn-position assignment. Analyzing three mouse brain regions (hippocampus, cerebellum, and cortex), we successfully identify a total of 592 GPs including 130 pairs of sn-position isomers. Further temporal GPs analysis in the three functional brain regions illustrates their metabolic alterations in AD progression. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|