Autor: |
Huawei Li, Haiying Guan, Qicui Zhuo, Zongshuai Wang, Shengdong Li, Jisheng Si, Bin Zhang, Bo Feng, Ling-an Kong, Fahong Wang, Zheng Wang, Lishun Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Biological Research, Vol 53, Iss 1, Pp 1-16 (2020) |
Druh dokumentu: |
article |
ISSN: |
0717-6287 |
DOI: |
10.1186/s40659-020-00291-6 |
Popis: |
Abstract Background Abscisic acid-, stress-, and ripening-induced (ASR) genes are a class of plant specific transcription factors (TFs), which play important roles in plant development, growth and abiotic stress responses. The wheat ASRs have not been described in genome-wide yet. Methods We predicted the transmembrane regions and subcellular localization using the TMHMM server, and Plant-mPLoc server and CELLO v2.5, respectively. Then the phylogeny tree was built by MEGA7. The exon–intron structures, conserved motifs and TFs binding sites were analyzed by GSDS, MEME program and PlantRegMap, respectively. Results In wheat, 33ASR genes were identified through a genome-wide survey and classified into six groups. Phylogenetic analyses revealed that the TaASR proteins in the same group tightly clustered together, compared with those from other species. Duplication analysis indicated that the TaASR gene family has expanded mainly through tandem and segmental duplication events. Similar gene structures and conserved protein motifs of TaASRs in wheat were identified in the same groups. ASR genes contained various TF binding cites associated with the stress responses in the promoter region. Gene expression was generally associated with the expected group-specific expression pattern in five tissues, including grain, leaf, root, spike and stem, indicating the broad conservation of ASR genes function during wheat evolution. The qRT-PCR analysis revealed that several ASRs were up-regulated in response to NaCl and PEG stress. Conclusion We identified ASR genes in wheat and found that gene duplication events are the main driving force for ASR gene evolution in wheat. The expression of wheat ASR genes was modulated in responses to multiple abiotic stresses, including drought/osmotic and salt stress. The results provided important information for further identifications of the functions of wheat ASR genes and candidate genes for high abiotic stress tolerant wheat breeding. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|