Diastolic time – frequency relation in the stress echo lab: filling timing and flow at different heart rates

Autor: Faita Francesco, Pianelli Mascia, Alonso-Rodriguez David, Pratali Lorenza, Pasanisi Emilio, Petersen Christina, Venneri Lucia, Bianchini Elisabetta, Gemignani Vincenzo, Bombardini Tonino, Giannoni Massimo, Arpesella Giorgio, Picano Eugenio
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: Cardiovascular Ultrasound, Vol 6, Iss 1, p 15 (2008)
Druh dokumentu: article
ISSN: 1476-7120
DOI: 10.1186/1476-7120-6-15
Popis: Abstract A cutaneous force-frequency relation recording system based on first heart sound amplitude vibrations has been recently validated. Second heart sound can be simultaneously recorded in order to quantify both systole and diastole duration. Aims 1- To assess the feasibility and extra-value of operator-independent, force sensor-based, diastolic time recording during stress. Methods We enrolled 161 patients referred for stress echocardiography (exercise 115, dipyridamole 40, pacing 6 patients). The sensor was fastened in the precordial region by a standard ECG electrode. The acceleration signal was converted into digital and recorded together with ECG signal. Both systolic and diastolic times were acquired continuously during stress and were displayed by plotting times vs. heart rate. Diastolic filling rate was calculated as echo-measured mitral filling volume/sensor-monitored diastolic time. Results Diastolic time decreased during stress more markedly than systolic time. At peak stress 62 of the 161 pts showed reversal of the systolic/diastolic ratio with the duration of systole longer than diastole. In the exercise group, at 100 bpm HR, systolic/diastolic time ratio was lower in the 17 controls (0.74 ± 0.12) than in patients (0.86 ± 0.10, p < 0.05 vs. controls). Diastolic filling rate increased from 101 ± 36 (rest) to 219 ± 92 ml/m2* s-1 at peak stress (p < 0.5 vs. rest). Conclusion Cardiological systolic and diastolic duration can be monitored during stress by using an acceleration force sensor. Simultaneous calculation of stroke volume allows monitoring diastolic filling rate. Stress-induced "systolic-diastolic mismatch" can be easily quantified and is associated to several cardiac diseases, possibly expanding the spectrum of information obtainable during stress.
Databáze: Directory of Open Access Journals