Nonlinear fourth order problems with asymptotically linear nonlinearities

Autor: Abir Amor Ben Ali, Makkia Dammak
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematica Bohemica, Vol 149, Iss 2, Pp 209-223 (2024)
Druh dokumentu: article
ISSN: 0862-7959
2464-7136
DOI: 10.21136/MB.2023.0008-22
Popis: We investigate some nonlinear elliptic problems of the form \Delta^2v + \sigma(x) v= h(x,v)\quadin \Omega,\quad v=\Delta v=0 \quadon \partial\Omega, \eqno({\rm P}) where $\Omega$ is a regular bounded domain in $\mathbb{R}^N$, $N\geq2$, $\sigma(x)$ a positive function in $L^{\infty}(\Omega)$, and the nonlinearity $h(x,t)$ is indefinite. We prove the existence of solutions to the problem (P) when the function $h(x,t)$ is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.
Databáze: Directory of Open Access Journals