Hydroxyl Radical Generation by the H2O2/CuII/Phenanthroline System under Both Neutral and Alkaline Conditions: An EPR/Spin-Trapping Investigation
Autor: | Elsa Walger, Nathalie Marlin, Gérard Mortha, Florian Molton, Carole Duboc |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Applied Sciences, Vol 11, Iss 2, p 687 (2021) |
Druh dokumentu: | article |
ISSN: | 11020687 2076-3417 |
DOI: | 10.3390/app11020687 |
Popis: | The copper–phenanthroline complex CuI(Phen)2 was the first artificial nuclease studied in biology. The mechanism responsible for this activity involves CuII(Phen)2 and H2O2. Even if H2O2/Cu systems have been extensively studied in biology and oxidative chemistry, most of these studies were carried out at physiological pH only, and little information is available on the generation of radicals by the H2O2/CuII-Phen system. In the context of paper pulp bleaching to improve the bleaching ability of H2O2, this system has been investigated, mostly at alkaline pH, and more recently at near-neutral pH in the case of dyed cellulosic fibers. Hence, this paper aims at studying the production of radicals with the H2O2/CuII-Phen system at near-neutral and alkaline pHs. Using the EPR/spin-trapping method, HO• formation was monitored to understand the mechanisms involved. DMPO was used as a spin-trap to form DMPO–OH in the presence of HO•, and two HO• scavengers were compared to identify the origin of the observed DMPO–OH adduct, as nucleophilic addition of water onto DMPO leads to the same adduct. H2O2 decomposition was enhanced by the addition of CuII–Phen (and only slightly by addition of CuSO4), reaching a level similar to the Fenton reagent at near-neutral pH. This evidences the role of Phen, which improves the effect of CuII by tuning the electronic structure and structural properties of the corresponding CuII complexes. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |