Derivatives of Orthonormal Polynomials and Coefficients of Hermite-Fejér Interpolation Polynomials with Exponential-Type Weights
Autor: | H. S. Jung, R. Sakai |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Journal of Inequalities and Applications, Vol 2010 (2010) |
Druh dokumentu: | article |
ISSN: | 1025-5834 1029-242X |
DOI: | 10.1155/2010/816363 |
Popis: | Let ℝ=(−∞,∞), and let Q∈C2:ℝ→[0,∞) be an even function. In this paper, we consider the exponential-type weights wρ(x)=|x|ρexp(−Q(x)), ρ>−1/2, x∈ℝ, and the orthonormal polynomials pn(wρ2;x) of degree n with respect to wρ(x). So, we obtain a certain differential equation of higher order with respect to pn(wρ2;x) and we estimate the higher-order derivatives of pn(wρ2;x) and the coefficients of the higher-order Hermite-Fejér interpolation polynomial based at the zeros of pn(wρ2;x). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |