Derivatives of Orthonormal Polynomials and Coefficients of Hermite-Fejér Interpolation Polynomials with Exponential-Type Weights

Autor: H. S. Jung, R. Sakai
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2010 (2010)
Druh dokumentu: article
ISSN: 1025-5834
1029-242X
DOI: 10.1155/2010/816363
Popis: Let ℝ=(−∞,∞), and let Q∈C2:ℝ→[0,∞) be an even function. In this paper, we consider the exponential-type weights wρ(x)=|x|ρexp(−Q(x)), ρ>−1/2, x∈ℝ, and the orthonormal polynomials pn(wρ2;x) of degree n with respect to wρ(x). So, we obtain a certain differential equation of higher order with respect to pn(wρ2;x) and we estimate the higher-order derivatives of pn(wρ2;x) and the coefficients of the higher-order Hermite-Fejér interpolation polynomial based at the zeros of pn(wρ2;x).
Databáze: Directory of Open Access Journals