Malaria parasite infection compromises control of concurrent systemic non-typhoidal Salmonella infection via IL-10-mediated alteration of myeloid cell function.
Autor: | Kristen L Lokken, Jason P Mooney, Brian P Butler, Mariana N Xavier, Jennifer Y Chau, Nicola Schaltenberg, Ramie H Begum, Werner Müller, Shirley Luckhart, Renée M Tsolis |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | PLoS Pathogens, Vol 10, Iss 5, p e1004049 (2014) |
Druh dokumentu: | article |
ISSN: | 1553-7366 1553-7374 |
DOI: | 10.1371/journal.ppat.1004049 |
Popis: | Non-typhoidal Salmonella serotypes (NTS) cause a self-limited gastroenteritis in immunocompetent individuals, while children with severe Plasmodium falciparum malaria can develop a life-threatening disseminated infection. This co-infection is a major source of child mortality in sub-Saharan Africa. However, the mechanisms by which malaria contributes to increased risk of NTS bacteremia are incompletely understood. Here, we report that in a mouse co-infection model, malaria parasite infection blunts inflammatory responses to NTS, leading to decreased inflammatory pathology and increased systemic bacterial colonization. Blunting of NTS-induced inflammatory responses required induction of IL-10 by the parasites. In the absence of malaria parasite infection, administration of recombinant IL-10 together with induction of anemia had an additive effect on systemic bacterial colonization. Mice that were conditionally deficient for either myeloid cell IL-10 production or myeloid cell expression of IL-10 receptor were better able to control systemic Salmonella infection, suggesting that phagocytic cells are both producers and targets of malaria parasite-induced IL-10. Thus, IL-10 produced during the immune response to malaria increases susceptibility to disseminated NTS infection by suppressing the ability of myeloid cells, most likely macrophages, to control bacterial infection. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |