Boundary layer analysis for a 2-D Keller-Segel model

Autor: Meng Linlin, Xu Wen-Qing, Wang Shu
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Open Mathematics, Vol 18, Iss 1, Pp 1895-1914 (2020)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2020-0093
Popis: We study the boundary layer problem of a Keller-Segel model in a domain of two space dimensions with vanishing chemical diffusion coefficient. By using the method of matched asymptotic expansions of singular perturbation theory, we construct an accurate approximate solution which incorporates the effects of boundary layers and then use the classical energy estimates to prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero.
Databáze: Directory of Open Access Journals