Autor: |
Meng Linlin, Xu Wen-Qing, Wang Shu |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Open Mathematics, Vol 18, Iss 1, Pp 1895-1914 (2020) |
Druh dokumentu: |
article |
ISSN: |
2391-5455 |
DOI: |
10.1515/math-2020-0093 |
Popis: |
We study the boundary layer problem of a Keller-Segel model in a domain of two space dimensions with vanishing chemical diffusion coefficient. By using the method of matched asymptotic expansions of singular perturbation theory, we construct an accurate approximate solution which incorporates the effects of boundary layers and then use the classical energy estimates to prove the structural stability of the approximate solution as the chemical diffusion coefficient tends to zero. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|