BOSO: A novel feature selection algorithm for linear regression with high-dimensional data.
Autor: | Luis V Valcárcel, Edurne San José-Enériz, Xabier Cendoya, Ángel Rubio, Xabier Agirre, Felipe Prósper, Francisco J Planes |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | PLoS Computational Biology, Vol 18, Iss 5, p e1010180 (2022) |
Druh dokumentu: | article |
ISSN: | 1553-734X 1553-7358 |
DOI: | 10.1371/journal.pcbi.1010180 |
Popis: | With the frenetic growth of high-dimensional datasets in different biomedical domains, there is an urgent need to develop predictive methods able to deal with this complexity. Feature selection is a relevant strategy in machine learning to address this challenge. We introduce a novel feature selection algorithm for linear regression called BOSO (Bilevel Optimization Selector Operator). We conducted a benchmark of BOSO with key algorithms in the literature, finding a superior accuracy for feature selection in high-dimensional datasets. Proof-of-concept of BOSO for predicting drug sensitivity in cancer is presented. A detailed analysis is carried out for methotrexate, a well-studied drug targeting cancer metabolism. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |