BOSO: A novel feature selection algorithm for linear regression with high-dimensional data.

Autor: Luis V Valcárcel, Edurne San José-Enériz, Xabier Cendoya, Ángel Rubio, Xabier Agirre, Felipe Prósper, Francisco J Planes
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: PLoS Computational Biology, Vol 18, Iss 5, p e1010180 (2022)
Druh dokumentu: article
ISSN: 1553-734X
1553-7358
DOI: 10.1371/journal.pcbi.1010180
Popis: With the frenetic growth of high-dimensional datasets in different biomedical domains, there is an urgent need to develop predictive methods able to deal with this complexity. Feature selection is a relevant strategy in machine learning to address this challenge. We introduce a novel feature selection algorithm for linear regression called BOSO (Bilevel Optimization Selector Operator). We conducted a benchmark of BOSO with key algorithms in the literature, finding a superior accuracy for feature selection in high-dimensional datasets. Proof-of-concept of BOSO for predicting drug sensitivity in cancer is presented. A detailed analysis is carried out for methotrexate, a well-studied drug targeting cancer metabolism.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje