A new qualitative proof of a result on the real jacobian conjecture
Autor: | FRANCISCO BRAUN, JAUME LLIBRE |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Anais da Academia Brasileira de Ciências, Vol 87, Iss 3, Pp 1519-1524 (2015) |
Druh dokumentu: | article |
ISSN: | 1678-2690 0001-3765 |
DOI: | 10.1590/0001-3765201520130408 |
Popis: | Let F= (f, g) : R2 → R2be a polynomial map such that det DF(x) is different from zero for all x∈ R2. We assume that the degrees of fand gare equal. We denote by the homogeneous part of higher degree of f and g, respectively. In this note we provide a proof relied on qualitative theory of differential equations of the following result: If do not have real linear factors in common, then F is injective. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |