A new qualitative proof of a result on the real jacobian conjecture

Autor: FRANCISCO BRAUN, JAUME LLIBRE
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Anais da Academia Brasileira de Ciências, Vol 87, Iss 3, Pp 1519-1524 (2015)
Druh dokumentu: article
ISSN: 1678-2690
0001-3765
DOI: 10.1590/0001-3765201520130408
Popis: Let F= (f, g) : R2 → R2be a polynomial map such that det DF(x) is different from zero for all x∈ R2. We assume that the degrees of fand gare equal. We denote by the homogeneous part of higher degree of f and g, respectively. In this note we provide a proof relied on qualitative theory of differential equations of the following result: If do not have real linear factors in common, then F is injective.
Databáze: Directory of Open Access Journals