Involutions fixing HP1(2m)∪HP2(2m)∪HP(2n+1) of the fixed point set
Autor: | Suqian ZHAO |
---|---|
Jazyk: | čínština |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Journal of Hebei University of Science and Technology, Vol 36, Iss 6, Pp 573-576 (2015) |
Druh dokumentu: | article |
ISSN: | 1008-1542 |
DOI: | 10.7535/hbkd.2015yx06004 |
Popis: | Let (Mr,T) be a smooth closed manifold of dimension r with a smooth involution T whose fixed point set is F=HP1(2m)∪HP2(2m)∪HP(2n+1)(m≥1), where HP(n) denotes the n-dimensional quaternionic projective space. By constructing symmetric polynomial and computing characteristic number, it is proved that when r>8m+8n+8, every involution (Mr,T) fixes F bounds. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |