Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems

Autor: Giovani E. Morales-Hernández, Juan C. Castellanos, José L. Romero, Andrei B. Klimov
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Entropy, Vol 23, Iss 6, p 684 (2021)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e23060684
Popis: We apply the semi-classical limit of the generalized SO(3) map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on T*S2. Using the asymptotic form of the star-product, we manage to “quantize” one of the classical dynamic variables and introduce a discretized version of the Truncated Wigner Approximation (TWA). Two emblematic examples of quantum dynamics (rotor in an external field and two coupled spins) are analyzed, and the results of exact, continuous, and discretized versions of TWA are compared.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje