Gene Coexpression Network Comparison via Persistent Homology

Autor: Ali Nabi Duman, Harun Pirim
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: International Journal of Genomics, Vol 2018 (2018)
Druh dokumentu: article
ISSN: 2314-436X
2314-4378
DOI: 10.1155/2018/7329576
Popis: Persistent homology, a topological data analysis (TDA) method, is applied to microarray data sets. Although there are a few papers referring to TDA methods in microarray analysis, the usage of persistent homology in the comparison of several weighted gene coexpression networks (WGCN) was not employed before to the very best of our knowledge. We calculate the persistent homology of weighted networks constructed from 38 Arabidopsis microarray data sets to test the relevance and the success of this approach in distinguishing the stress factors. We quantify multiscale topological features of each network using persistent homology and apply a hierarchical clustering algorithm to the distance matrix whose entries are pairwise bottleneck distance between the networks. The immunoresponses to different stress factors are distinguishable by our method. The networks of similar immunoresponses are found to be close with respect to bottleneck distance indicating the similar topological features of WGCNs. This computationally efficient technique analyzing networks provides a quick test for advanced studies.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje