Establishing a model composed of immune-related gene-modules to predict tumor immunotherapy response

Autor: Deqiang Fu, Xiaoyuan Weng, Yunxia Su, Binhuang Hong, Aiyue zhao, Jianqing Lin
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-67742-y
Popis: Abstract At present, tumor immunotherapy has been widely applied to treat various cancers. However, the accuracy of predicting treatment efficacy has not yet achieved a significant breakthrough. This study aimed to construct a prediction model based on the modified WGCNA algorithm to precisely judge the anti-tumor immune response. First, we used a murine colon cancer model to screen corresponding DEGs according to different groups. GSEA was used to analyze the potential mechanisms of the immune-related DEGs (irDEGs) in each group. Subsequently, the intersection of the irDEGs in every group was acquired, and 7 gene-modules were mapped. Finally, 4 gene-modules including cogenes, antiPD-1 immu-genes, chemo immu-genes and comb immu-genes, were selected for subsequent study. Furthermore, a clinical dataset of gastric cancer patients receiving immunotherapy was enrolled, and the irDEGs were identified. A total of 34 vital irDEGs were obtained from the intersections of the vital irDEGs and the four gene-modules. Next, the vital irDEGs were analyzed by the modified WGCNA algorithm, and the correlation coefficients between the 4 gene-modules and the response status to immunotherapy were calculated. Thus, a prediction model based on correlation coefficients was built, and the corresponding model scores were acquired. The AUC calculated according to the model score was 0.727, which was non-inferior to that of the ESTIMATE score and the TIDE score. Meanwhile, the AUC calculated according to the classification of the model scores was 0.705, which was non-inferior to that of the ESTIMATE classification and the TIDE classification. The prediction accuracy of the model was validated in clinical datasets of other cancers.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje