H+-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation

Autor: Evgeniya A. Malykh, Liubov I. Golubeva, Ekaterina S. Kovaleva, Mikhail S. Shupletsov, Elena V. Rodina, Sergey V. Mashko, Nataliya V. Stoynova
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Microorganisms, Vol 11, Iss 2, p 294 (2023)
Druh dokumentu: article
ISSN: 2076-2607
DOI: 10.3390/microorganisms11020294
Popis: Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PPi, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PPi hydrolysis is carried out by soluble cytoplasmic PPase (S-PPases) with the released energy dissipated in the form of heat. In Rhodospirillum rubrum, part of this energy can be conserved by proton-pumping pyrophosphatase (H+-PPaseRru) in the form of a proton electrochemical gradient for further ATP synthesis. Here, the codon-harmonized gene hppaRru encoding H+-PPaseRru was expressed in the Escherichia coli chromosome. We demonstrate, for the first time, that H+-PPaseRru complements the essential native S-PPase in E. coli cells. 13C-MFA confirmed that replacing native PPase to H+-PPaseRru leads to the re-distribution of carbon fluxes; a statistically significant 36% decrease in tricarboxylic acid (TCA) cycle fluxes was found compared with wild-type E. coli MG1655. Such a flux re-distribution can indicate the presence of an additional method for energy generation (e.g., ATP), which can be useful for the microbiological production of a number of compounds, the biosynthesis of which requires the consumption of ATP.
Databáze: Directory of Open Access Journals