Reconfigurations in brain networks upon awakening from slow wave sleep: Interventions and implications in neural communication

Autor: Cassie J. Hilditch, Kanika Bansal, Ravi Chachad, Lily R. Wong, Nicholas G. Bathurst, Nathan H. Feick, Amanda Santamaria, Nita L. Shattuck, Javier O. Garcia, Erin E. Flynn-Evans
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Network Neuroscience, Vol 7, Iss 1, Pp 102-121 (2023)
Druh dokumentu: article
ISSN: 2472-1751
DOI: 10.1162/netn_a_00272
Popis: AbstractSleep inertia is the brief period of impaired alertness and performance experienced immediately after waking. Little is known about the neural mechanisms underlying this phenomenon. A better understanding of the neural processes during sleep inertia may offer insight into the awakening process. We observed brain activity every 15 min for 1 hr following abrupt awakening from slow wave sleep during the biological night. Using 32-channel electroencephalography, a network science approach, and a within-subject design, we evaluated power, clustering coefficient, and path length across frequency bands under both a control and a polychromatic short-wavelength-enriched light intervention condition. We found that under control conditions, the awakening brain is typified by an immediate reduction in global theta, alpha, and beta power. Simultaneously, we observed a decrease in the clustering coefficient and an increase in path length within the delta band. Exposure to light immediately after awakening ameliorated changes in clustering. Our results suggest that long-range network communication within the brain is crucial to the awakening process and that the brain may prioritize these long-range connections during this transitional state. Our study highlights a novel neurophysiological signature of the awakening brain and provides a potential mechanism by which light improves performance after waking.
Databáze: Directory of Open Access Journals