Autor: |
Zhou-Hao Zhang, Hong-Sheng Zhang, Peng-Bo Zheng, Min-Yi Chen |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Frontiers in Marine Science, Vol 11 (2024) |
Druh dokumentu: |
article |
ISSN: |
2296-7745 |
DOI: |
10.3389/fmars.2024.1287040 |
Popis: |
A second-order numerical wave-maker is realized by combining the paddle wave-maker theory proposed by Schäffer for physical experiments with the Fluent software. The numerical results from the paddle wave-maker method are compared with the results from the modified mass source wave-maker method, the theoretical solutions, and the physical experimental data. The numerical model based on the paddle wave-maker method is verified, and the applicable scopes of the two wave-maker methods are discussed. The paddle wave-maker method is not suitable for bichromatic wave combinations that include shallow-water waves. However, within their common applicable range, the numerical results from the paddle wave-maker method are better than those from the modified mass source wave-maker method, at least for the grid divisions adopted in this study. The effects of the incident wave parameters on the nonlinear wave-wave interaction are also analyzed. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|