Autor: |
Bin Zhang, Jiawen He, Peishun Liu, Liang Wang, Ruichun Tang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-60798-w |
Popis: |
Abstract This paper proposes an innovative global solution which is a pioneering work applying automated machine learning algorithms to remarkable precision sparse underwater direction-of-arrival (DOA) estimation that views the subaquatic sparse-sampling DOA estimation problem as a classification prediction task. The proposed solution, termed automated multi-layer perceptron discriminative neural network (AutoMPDNN), is built upon a Bayesian optimization framework. AutoMPDNN transforms sparsely sampled time-domain signals into the complex domain, preserving essential components in a one-source single-snapshot scenario. Leveraging Bayesian optimization principles, the algorithm embeds necessary hyperparameters into the loss function, effectively defining it as a maximum likelihood problem using the upper confidence bound function and incorporating sparse signal features. We also explore the model space architecture and introduce variants of AutoMPDNN, denoted as AutoMPDNNs_ln (n = 2,3,4). Through a series of plane wave simulation experiments, it is demonstrated that AutoMPDNN achieves the highest prediction performance for one-source single-snapshot scenarios compared to classical DOA estimation algorithms that incorporate sparse representation approaches, as well as contemporary deep learning DOA methods under varying conditions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|