Autor: |
Shuang Chen, Yi Meng, Guozhi Wu, Zhize Liu, Xiaodong Lian, Jianyu Hu, Dongfang Yang, Guiqi Zhang, Kun Li, Hao Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Frontiers in Materials, Vol 8 (2021) |
Druh dokumentu: |
article |
ISSN: |
2296-8016 |
DOI: |
10.3389/fmats.2021.719536 |
Popis: |
Anterior cervical discectomy and fusion (ACDF) is a commonly used surgical method for the treatment of cervical spondylosis. As ACDF surgery is widely used in clinics, identifying suitable materials to design and prepare cervical interbody fusion cages is a hot research topic. Here, we describe a new three-dimensional (3D) printing approach to create stretchable and tough silk fibroin/nano-hydroxyapatite (SF/nHAp) composites with tunable mechanical properties. The compressive strength of the novel composites with biomimetic structure could reach more than 128 MPa. More importantly, the composites were prepared using 30% silk fibroin and 70% hydroxyapatite, a composition similar to the human bone tissue. Finite element analysis results indicate that the stress distribution of SF/nHAp composite cervical interbody fusion cages in vivo is more uniform than that of commercial Ti alloy cages. This study evaluates the effectiveness of SF/nHAp composites for application in cervical interbody fusion cages and in the field of bone tissue engineering. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|