Autor: |
David Cruz-Uribe, Michael Penrod, Scott Rodney |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Mathematics in Engineering, Vol 4, Iss 5, Pp 1-22 (2022) |
Druh dokumentu: |
article |
ISSN: |
2640-3501 |
DOI: |
10.3934/mine.2022036?viewType=HTML |
Popis: |
In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|