Poincaré inequalities and Neumann problems for the variable exponent setting

Autor: David Cruz-Uribe, Michael Penrod, Scott Rodney
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics in Engineering, Vol 4, Iss 5, Pp 1-22 (2022)
Druh dokumentu: article
ISSN: 2640-3501
DOI: 10.3934/mine.2022036?viewType=HTML
Popis: In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.
Databáze: Directory of Open Access Journals