New Monotonicity and Infinite Divisibility Properties for the Mittag-Leffler Function and for Stable Distributions

Autor: Nuha Altaymani, Wissem Jedidi
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics, Vol 11, Iss 19, p 4141 (2023)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math11194141
Popis: Hyperbolic complete monotonicity property (HCM) is a way to check if a distribution is a generalized gamma (GGC), hence is infinitely divisible. In this work, we illustrate to which extent the Mittag-Leffler functions Eα,α∈(0,2], enjoy the HCM property, and then intervene deeply in the probabilistic context. We prove that for suitable α and complex numbers z, the real and imaginary part of the functions x↦Eαzx, are tightly linked to the stable distributions and to the generalized Cauchy kernel.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje