Autor: |
Sayaka Miura, Rio Yamagishi, Mano Ando, Arisa Teramae, Yuna Hachikubo, Yoshiyuki Yokoyama, Satoshi Takei |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Gels, Vol 10, Iss 7, p 453 (2024) |
Druh dokumentu: |
article |
ISSN: |
2310-2861 |
DOI: |
10.3390/gels10070453 |
Popis: |
Cationic gas-permeable molds fabricated via sol–gel polymerization undergo cationic polymerization using epoxide, resulting in gas permeability owing to their cross-linked structures. By applying this cationic gas-permeable mold to nano-injection molding, which is used for the mass production of resins, nano-protrusion structures with a height of approximately 300 nm and a pitch of approximately 400 nm were produced. The molding defects caused by gas entrapment in the air and cavities when using conventional gas-impermeable metal molds were improved, and the cationic gas-permeable mold could be continuously fabricated for 3000 shots under non-vacuum conditions. The results of the mechanical evaluations showed improved thermal stability and Martens hardness, which is expected to lead to the advanced production of resin nano-structures. Furthermore, the surface roughness of the nano-protrusion structures fabricated using injection molding improved the water contact angle by approximately 46°, contributing to the development of various hydrophobic materials in the future. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|