Autor: |
Jeroen van Bergen, Marcel G.M. Camps, Iris N. Pardieck, Dominique Veerkamp, Wing Yan Leung, Anouk A. Leijs, Sebenzile K. Myeni, Marjolein Kikkert, Ramon Arens, Gerben C. Zondag, Ferry Ossendorp |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
JCI Insight, Vol 8, Iss 21 (2023) |
Druh dokumentu: |
article |
ISSN: |
2379-3708 |
DOI: |
10.1172/jci.insight.172488 |
Popis: |
SARS-CoV-2 is the third zoonotic coronavirus to cause a major outbreak in humans in recent years, and many more SARS-like coronaviruses with pandemic potential are circulating in several animal species. Vaccines inducing T cell immunity against broadly conserved viral antigens may protect against hospitalization and death caused by outbreaks of such viruses. We report the design and preclinical testing of 2 T cell–based pan-sarbecovirus vaccines, based on conserved regions within viral proteins of sarbecovirus isolates of human and other carrier animals, like bats and pangolins. One vaccine (CoVAX_ORF1ab) encoded antigens derived from nonstructural proteins, and the other (CoVAX_MNS) encoded antigens from structural proteins. Both multiantigen DNA vaccines contained a large set of antigens shared across sarbecoviruses and were rich in predicted and experimentally validated human T cell epitopes. In mice, the multiantigen vaccines generated both CD8+ and CD4+ T cell responses to shared epitopes. Upon encounter of full-length spike antigen, CoVAX_MNS-induced CD4+ T cells were responsible for accelerated CD8+ T cell and IgG Ab responses specific to the incoming spike, irrespective of its sarbecovirus origin. Finally, both vaccines elicited partial protection against a lethal SARS-CoV-2 challenge in human angiotensin-converting enzyme 2–transgenic mice. These results support clinical testing of these universal sarbecovirus vaccines for pandemic preparedness. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|