Autor: |
Fengjuan Meng, Cuncai Liu, Chang Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Boundary Value Problems, Vol 2019, Iss 1, Pp 1-9 (2019) |
Druh dokumentu: |
article |
ISSN: |
1687-2770 |
DOI: |
10.1186/s13661-019-1123-2 |
Popis: |
Abstract This paper is a continuation of Meng and Zhong in (Discrete Contin. Dyn. Syst., Ser. B 19:217–230, 2014). We go on studying the property of the global attractor for some damped wave equation with critical exponent. The difference between this paper and Meng and Zhong in (Discrete Contin. Dyn. Syst., Ser. B 19:217–230, 2014) is that the origin is not a local minimum point but rather a saddle point of the Lyapunov function F for the symmetric dynamical systems. Using the abstract result established in Zhang et al. in (Nonlinear Anal., Real World Appl. 36:44–55, 2017), we prove the existence of multiple equilibrium points in the global attractor for some wave equations under some suitable assumptions in the case that the origin is an unstable equilibrium point. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|