On the Solution of the Rational Matrix Equation X=Q+LX−1LT
Autor: | Heike Faßbender, Peter Benner |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | EURASIP Journal on Advances in Signal Processing, Vol 2007 (2007) |
Druh dokumentu: | article |
ISSN: | 1687-6172 1687-6180 |
DOI: | 10.1155/2007/21850 |
Popis: | We study numerical methods for finding the maximal symmetric positive definite solution of the nonlinear matrix equation X=Q+LX−1LT, where Q is symmetric positive definite and L is nonsingular. Such equations arise for instance in the analysis of stationary Gaussian reciprocal processes over a finite interval. Its unique largest positive definite solution coincides with the unique positive definite solution of a related discrete-time algebraic Riccati equation (DARE). We discuss how to use the butterfly SZ algorithm to solve the DARE. This approach is compared to several fixed-point and doubling-type iterative methods suggested in the literature. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |