Investigate on the Mechanism of HfO2/Si0.7Ge0.3 Interface Passivation Based on Low-Temperature Ozone Oxidation and Si-Cap Methods

Autor: Qide Yao, Xueli Ma, Hanxiang Wang, Yanrong Wang, Guilei Wang, Jing Zhang, Wenkai Liu, Xiaolei Wang, Jiang Yan, Yongliang Li, Wenwu Wang
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nanomaterials, Vol 11, Iss 4, p 955 (2021)
Druh dokumentu: article
ISSN: 11040955
2079-4991
DOI: 10.3390/nano11040955
Popis: The interface passivation of the HfO2/Si0.7Ge0.3 stack is systematically investigated based on low-temperature ozone oxidation and Si-cap methods. Compared with the Al2O3/Si0.7Ge0.3 stack, the dispersive feature and interface state density (Dit) of the HfO2/Si0.7Ge0.3 stack MOS (Metal-Oxide-Semiconductor) capacitor under ozone direct oxidation (pre-O sample) increases obviously. This is because the tiny amounts of GeOx in the formed interlayer (IL) oxide layer are more likely to diffuse into HfO2 and cause the HfO2/Si0.7Ge0.3 interface to deteriorate. Moreover, a post-HfO2-deposition (post-O) ozone indirect oxidation is proposed for the HfO2/Si0.7Ge0.3 stack; it is found that compared with pre-O sample, the Dit of the post-O sample decreases by about 50% due to less GeOx available in the IL layer. This is because the amount of oxygen atoms reaching the interface of HfO2/Si0.7Ge0.3 decreases and the thickness of IL in the post-O sample also decreases. To further reduce the Dit of the HfO2/Si0.7Ge0.3 interface, a Si-cap passivation with the optimal thickness of 1 nm is developed and an excellent HfO2/Si0.7Ge0.3 interface with Dit of 1.53 × 1011 eV−1cm−2 @ E−Ev = 0.36 eV is attained. After detailed analysis of the chemical structure of the HfO2/IL/Si-cap/Si0.7Ge0.3 using X-ray photoelectron spectroscopy (XPS), it is confirmed that the excellent HfO2/Si0.7Ge0.3 interface is realized by preventing the formation of Hf-silicate/Hf-germanate and Si oxide originating from the reaction between HfO2 and Si0.7Ge0.3 substrate.
Databáze: Directory of Open Access Journals