Impacts of orthophosphate–polyphosphate blends on the dissolution and transformation of lead (II) carbonate

Autor: Javier A. Locsin, Benjamin F. Trueman, Evelyne Doré, Aaron Bleasdale-Pollowy, Graham A. Gagnon
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Scientific Reports, Vol 12, Iss 1, Pp 1-15 (2022)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-022-22683-2
Popis: Abstract Orthophosphate–polyphosphate blends are commonly used to control lead release into drinking water, but little is known about how they interact with lead corrosion scale. Conventional corrosion control practice assumes that orthophosphate controls lead release by forming insoluble Pb-phosphate minerals, but this does not always occur, and under certain conditions, phosphate blends may increase lead release. Here, we used continuously-stirred tank reactors to compare orthophosphate–polyphosphate blends with orthophosphate on the basis of lead (II) carbonate dissolution and transformation at environmentally relevant phosphate concentrations. Three model polyphosphates—tripoly-, trimeta- and hexametaphosphate—were used. Hexametaphosphate was the strongest complexing agent (1.60–2.10 molPb/molPolyphosphate), followed by tripolyphosphate and trimetaphosphate (1.00 and 0.07 molPb/molPolyphosphate, respectively. At equivalent orthophosphate and polyphosphate concentrations (as P), orthophosphate-trimetaphosphate had minimal impact on lead release, while orthophosphate-tripolyphosphate increased dissolved lead. Orthophosphate-hexametaphosphate also increased dissolved lead, but only over a 24-h stagnation. Both orthophosphate-tripolyphosphate and orthophosphate-hexametaphosphate increased colloidal lead after 24-h. Increasing the concentrations of hexameta- and tripoly-phosphate increased dissolved lead release, while all three polyphosphates inhibited the formation of hydroxypyromorphite and reduced the phosphorus content of the resulting lead solids. We attributed the impacts of orthophosphate–polyphosphates to a combination of complexation, adsorption, colloidal dispersion, polyphosphate hydrolysis, and lead mineral precipitation.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje