Lithium-Ion-Sieve Hydrogel Based on Aluminum Doping with High Stretchability, Strong Adsorption Capacity and Low Dissolution Loss

Autor: Yujie Zhang, Yang Wang, Le Guo, Chenzhengzhe Yan, Long Li, Shuyun Cui, Yujie Wang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Gels, Vol 10, Iss 11, p 710 (2024)
Druh dokumentu: article
ISSN: 2310-2861
DOI: 10.3390/gels10110710
Popis: In recent years, with the development of the new energy industry, lithium resources need to be supplied in large quantities. The lithium-ion sieve (LIS) is regarded as an ideal adsorbent for recovering lithium resources from brine because of its excellent lithium adsorption capacity and structural stability. However, because it is powdery after molding, and there will be problems such as dissolution loss of manganese, which limits its industrial development. In this study, in the process of preparing hydrogels of acrylic acid (AA), acrylamide (AM) and chitosan (CS), an LIS hydrogel with high mechanical properties, strong adsorption capacity and low dissolution loss was prepared by doping LIS and Al ions. Among them, the stress of the prepared chitosan–acrylic acid–acrylamide hydrogel (PASA-1) with an Al doping content of 1% reached 603 KPa, and the maximum strain reached 189%, which showed excellent damage resistance. In addition, the adsorption performance of PASA-1 reached 43.2 mg/g, which was excellent, which was attributed to the addition of Al ions, which inhibited the dissolution loss of manganese ions. This idea has great potential in the direction of lithium resource recovery and provides a new method for the use of hydrogel in the direction of lithium-ion sieves.
Databáze: Directory of Open Access Journals