Clinical validation of commercial deep-learning based auto-segmentation models for organs at risk in the head and neck region: a single institution study

Autor: Casey L. Johnson, Robert H. Press, Charles B. Simone, Brian Shen, Pingfang Tsai, Lei Hu, Francis Yu, Chavanon Apinorasethkul, Christopher Ackerman, Huifang Zhai, Haibo Lin, Sheng Huang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Frontiers in Oncology, Vol 14 (2024)
Druh dokumentu: article
ISSN: 2234-943X
DOI: 10.3389/fonc.2024.1375096
Popis: PurposeTo evaluate organ at risk (OAR) auto-segmentation in the head and neck region of computed tomography images using two different commercially available deep-learning-based auto-segmentation (DLAS) tools in a single institutional clinical applications.MethodsTwenty-two OARs were manually contoured by clinicians according to published guidelines on planning computed tomography (pCT) images for 40 clinical head and neck cancer (HNC) cases. Automatic contours were generated for each patient using two deep-learning-based auto-segmentation models—Manteia AccuContour and MIM ProtégéAI. The accuracy and integrity of autocontours (ACs) were then compared to expert contours (ECs) using the Sørensen-Dice similarity coefficient (DSC) and Mean Distance (MD) metrics.ResultsACs were generated for 22 OARs using AccuContour and 17 OARs using ProtégéAI with average contour generation time of 1 min/patient and 5 min/patient respectively. EC and AC agreement was highest for the mandible (DSC 0.90 ± 0.16) and (DSC 0.91 ± 0.03), and lowest for the chiasm (DSC 0.28 ± 0.14) and (DSC 0.30 ± 0.14) for AccuContour and ProtégéAI respectively. Using AccuContour, the average MD was
Databáze: Directory of Open Access Journals