Autor: |
Imane Ouallal, Younes Abbas, Houda ElYacoubi, Hamada Imtara, Mashail N. Al Zain, Mohemed Ouajdi, Younes El Goumi, Nurah M. Alzamel, Omar Mohammed Noman, Atmane Rochdi |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Horticulturae, Vol 8, Iss 4, p 280 (2022) |
Druh dokumentu: |
article |
ISSN: |
2311-7524 |
DOI: |
10.3390/horticulturae8040280 |
Popis: |
Our objective is to test selected mycorrhizal complexes to verify the contribution of mycorrhizal symbiosis as a biological tool promoting the development of the argan tree under hostile conditions. In addition, this study aims to assess the impact of soil drought caused by stopping watering of young argan plants inoculated with strains of fungal complexes indigenous to the species in comparison to non-inoculated plants. Under conditions of water deficit stress, the most marked reductions in fresh and dry biomass were recorded in non-mycorrhizal plants. The most negative values of leaf water potential Ψf and Ψb were also noted in non-mycorrhizal plants. On the other hand, plants inoculated with mycorrhizal Bouyzakarne inoculum were relatively less affected by watering discontinuation compared to those inoculated with mycorrhizal Argana inoculum. Water stress caused a reduction in potassium and phosphorus content in the leaves and roots of all plants. However, mycorrhizal plants exhibited the highest P and K values compared to non-mycorrhizal ones. Therefore, mycorrhization compensates for the deficit in absorption of inorganic nutrients during drought. Sodium gradually decreased in the leaves but increased in the roots, and this delocalization of Na+ ions under water deficit stress resulted in higher concentrations in the roots than in the leaves of all plants. However, the mycorrhizal plants exhibited relatively lower values of root Na+ compared to the non-mycorrhizal controls. The water deficit reduced the content of chlorophyll a and b in the leaves and the chlorophyll a/b ratio in stressed plants. The lowest chlorophyll values were recorded in non-mycorrhizal plants. The levels of proline and soluble sugars in the leaves and roots of argan plants increased in all plants, especially with the extension of the duration of stress. However, proline accumulation was higher in mycorrhizal plants, with superiority in plants inoculated with the Bouyzakarne complex in comparison with that of Argana. In contrast, the accumulation of soluble sugars was higher in non-mycorrhizal plants than in mycorrhizal plants. We concluded that with a correct choice of the symbiotic fungi complexes, AMF inoculation biotechnology can benefit argan cultivation, especially under stressful conditions in arid regions with structural drought, where native Arbuscular mycorrhizal fungi levels are low. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|